Mathematical Analysis for several

 inverse problems for fractional diffusion equationsMasahiro Yamamoto (The Universty of Tokyo) Seoul-Tokyo Conference
KIAS, Seoul, Korea, 1 December 2012

Issues Seen by Academia Engineering Researchers

"The Prediction of the Progress of Soil Contamination"

Field: Macro scale(100m-10km)

Pore size of soil:

 Micro scale (about $100 \mu \mathrm{~m}$)Illegal dumping

Base rock

Underground

Groundwater flow

Physical backgrounds

Anomalous diffusion in heterogenuous media e.g., soil

Fractional diffusion equation:
$\partial_{t}^{\alpha} u-\Delta u=0$
One good macroscopic model for slow diffusion

Long tail profile

$$
\|u(\cdot, t)\|_{L^{2}(\Omega)} \leq \frac{C}{1+\lambda_{1} t^{4}}\|a\|_{L^{2}(\Omega)}, \quad t \geq 0 .
$$

$0<\alpha<1$: subdiffusion
α : small \Longleftrightarrow Slow diffusion

Normal-diffusion ($\alpha=1$)

Sub-diffusion ($\alpha=0.5$)

Contents

- Backward problems
- Unique continuation: 1D case
- determination of fractional orders: $\partial_{t}^{\alpha} u+r \partial_{t}^{\beta} u=\Delta u$
- 1D inverse problem of determining order and one coefficient
- coefficient inverse problems
- determination of nonlinear terms

Motivation

For parabolic or hyperbolic equations, we have classical inverse problem:

- Backward problems
- Unique continuation
- coefficient inverse problems
- determination of nonlinear terms

We will study such kinds of inverse problems for fractional diffusion equations

Fractional diffusion equations

$x \in \Omega \subset \mathbb{R}^{n}$: bounded domain $n-1<\alpha<n, n \in \mathbb{N}$

$$
\begin{gathered}
\partial_{t}^{\alpha} u+\sum_{k=1}^{N} a_{k}(x) \partial_{t}^{\alpha_{k}} u=-A u \\
:=\sum_{i, j=1}^{n} \partial_{i}\left(a_{i j}(x) \partial_{j} u\right)+c(x) u, t>0
\end{gathered}
$$

$$
\begin{aligned}
& \partial_{t}^{\alpha} g(t)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t}(t-\tau)^{n-\alpha-1} \frac{d^{n}}{d \tau^{n}} g(\tau) d \tau \\
& \text { for } n-1<\alpha<n, n \in \mathbb{N} \\
& a_{i j} \in C^{1}(\bar{\Omega}), c \leq 0, \in C(\bar{\Omega})
\end{aligned}
$$

Characteristics of $\partial_{t}^{\alpha} u+\ldots$

∂_{t}^{α} is with memory effect \Longrightarrow

1. not strong smoothing property
2. infinite propagation speed

IBVP for fractional diffusion equations

intermediate regularity between parabolic and hyperbolic equations

- Hölder maximal regularity:
$\partial_{t}^{\alpha} u+A u=F(x, t)$
- Maximum principle
- Nonlinear dynamical system

Glance at comprehensive project

- Mathematics
- Partial differential equation
- Fractal structure of medium
- Multiscale modelling, homogenization,....
- Engineering:
risk management, environmental science,...
- Industry: many anomalous diffusions

Engine for project

Study Group for Solving Industrial Problems actual working place by industry, mathematicians,...

17 January - 23 January 2013
Graduate School of Mathematical Sciences
The University of Tokyo

Now mathematics!

1. Backward problem

Backward problem for $\alpha=1$ severely ill-posed Backward problem for $\alpha=2$ well-posed

Backward problem for $\alpha \neq 1, \neq 2 \Longrightarrow$ moderately ill-posed!

Theorem 1 (i) Let $0<\alpha<1$.

$$
\begin{gathered}
\partial_{t}^{\alpha} u=-A u(x, t),\left.\quad u\right|_{\partial \Omega}=0, \\
u(x, T)=a_{1}(x), \quad x \in \Omega
\end{gathered}
$$

For $\forall T>0$ and $\forall a_{1} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, there exists a unique solution
${ }^{\exists 1} u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap C\left((0, T] ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)$
and $\|u(\cdot, 0)\|_{L^{2}(\Omega)} \sim\|u(\cdot, T)\|_{H^{2}(\Omega)}$.
Remark:~ means both-sided estimate
(ii) Let $1<\alpha<2$.

$$
\partial_{t}^{\alpha} u=-A u(x, t),\left.\quad u\right|_{\partial \Omega}=0
$$

Then $\exists C>0$ such that

$$
\begin{gathered}
\|u(\cdot, 0)\|_{L^{2}(\Omega)}+\left\|\partial_{t} u(\cdot, 0)\right\|_{L^{2}(\Omega)} \\
\leq C\left(\|u(\cdot, T)\|_{H^{2}(\Omega)}+\left\|\partial_{t} u(\cdot, T)\right\|_{H^{2}(\Omega)}\right)
\end{gathered}
$$

with K. Ito (North Carolina State Univ.) and K. Sakamoto

2. Unique continuation

With J. Liu and L. Yan (Southeast Univ.)
Unique continuation:
$\partial_{t}^{\alpha} u=-A u$ in $Q:=\Omega \times(0, T)$
$u=\partial_{v} u=0$ on $\Gamma \times(0, T)$
$\Rightarrow \exists D \subset \subset Q$ where $u=0$.
Main tool for $\alpha=1$
Carleman estimate \Leftarrow integration by part

Main differences from $\alpha=1$

- Integration by part fails for ∂_{t}^{α}
- ∂_{t}^{α} has memory effect

Unique continuation

Theorem $\partial_{t}^{\frac{1}{2}} u-\partial_{1}^{2} u=0$ in $Q, u(x, 0)=0,0<x<\ell$ $u(0, t)=\partial_{1} u(0, t)=0,0<t<T$ implies $u=0$ in Q

Remark: Also conditional stability
Key: Carleman estimate (= L^{2}-weighted estimate)

- infinite propagation speed
- we need initial condition
- only 1D case.
- No Carleman estimate for general α

Unique continuation for general α

$$
\begin{gathered}
\partial_{t}^{\alpha} u=u_{x x}, \quad 0<x<1, t>0, \\
u(0, t)=f(t), \quad t>0 \\
u(x, 0)=0, \quad 0<x<1 .
\end{gathered}
$$

Inverse problem Let $\omega \subset(0, \ell)$ be fixed. Determine $u(1, t), 0<t<T$ by $\left.u\right|_{\omega \times(0, T)}$.

Theorem (J.Liu-L.Yan-Yamamoto)
Let $\frac{1}{2}<\alpha<\mathbf{1}$ and $u(\mathbf{1}, \mathbf{0})=0$.
$\exists C>0$ such that
$\|u(1, \cdot)\|_{L^{2}(0, T)} \leq C\left(\|h\|_{L^{2}(\omega \times(0, T))}+\|f\|_{L^{2}(0, T)}\right)$.

- Case $\alpha=1$: severely ill-posed, logarithmic conditional stability
- Case $\frac{1}{2}<\alpha<1$:
unconditional Lipschitz stability
$\|u(1, \cdot)\|_{L^{2}(0, T)} \sim\|u\|_{L^{2}(\omega \times(0, T))}$ if $f=0$.
\Longleftarrow regularity in non-homogeneous boundary value problem
(by K. Fujishiro)

Interpretation

Fractional diffusions equation:
no strong smoothing property

The inverse problem is more well-posed than the classical diffusion equation.

3. Determination of fractional

orders

Let $0<\beta<\alpha<1$.
$u_{\alpha, \beta}$:
$\partial_{t}^{\alpha} u+r_{0} \partial_{t}^{\beta} u=-A u$ in $\Omega \times(0, T)$
$\left.u\right|_{\partial \Omega}=0$
$u(x, 0)=a(x), x \in \Omega$
Inverse Problem: Let $x_{0} \in \Omega, \boldsymbol{T}>\mathbf{0}$ be fixed.
Determine (α, β) by $u_{\alpha, \beta}\left(x_{0}, t\right), 0<t<T$.

Theorem (uniqueness) Let: $\boldsymbol{a} \not \equiv \mathbf{0}, \geq \mathbf{0}$, smooth (e.g., $a \in H_{0}^{3}(\Omega)$ in 3D case). Then
$u_{\alpha_{1}, \beta_{1}}\left(x_{0}, t\right)=u_{\alpha_{2}, \beta_{2}}\left(x_{0}, t\right), 0<t<T$ implies $\alpha_{1}=\alpha_{2}$ and $\beta_{1}=\beta_{2}$.

Remark ?? Uniqueness for

$$
\partial_{t}^{\alpha_{0}}+\sum_{k=1}^{N} r_{k} \partial_{t}^{\alpha_{k}}
$$

Other determination of orders

$u_{\alpha, \gamma}$:
$\partial_{t}^{\alpha} u=-A^{\gamma} u$ in Q
$\left.u\right|_{\partial \Omega}=0, u(\cdot, 0)=a$
Theorem (uniqueness) Let: $\boldsymbol{a} \neq \mathbf{0}, \geq \mathbf{0}$, smooth (e.g., $a \in H_{0}^{3}(\Omega)$ in 3D case). If
$u_{\alpha_{1}, \gamma_{1}}\left(x_{0}, t\right)=u_{\alpha_{2}, \gamma_{2}}\left(x_{0}, t\right), 0<t<T$, then $\alpha_{1}=\alpha_{2}$ and $\gamma_{1}=\gamma_{2}$.

4. Determination of one derivative order and coefficient

J.Cheng (Fudan Univ.) -
J. Nakagawa (Nippon Steel)

- Yamamoto - T.Yamazaki

$$
\begin{aligned}
& \partial_{t}^{\alpha} u(x, t)=\frac{\partial}{\partial x}\left(p(x) \frac{\partial u}{\partial x}\right), 0<x<\ell, 0<t<T \\
& u(x, 0)=\delta: \text { delta function, } u_{x}(0, t)=u_{x}(\ell, t)=0
\end{aligned}
$$

Inverse problem: Determine $\alpha \in(0,1)$ and $p(x)$ by $u(0, t), 0<t<T$.
Answer: Uniqueness holds.
Key to proof: Gel'fanf-Levitan theory + eigenfunction expansion
G. Li, D. Zhang, X. Jia (Shandong Univ. Tech.) and M. Yamamoto:
Numerical reconstruction of p and α

5. Inverse source problem

with K. Sakamoto, Z. Li

$$
\partial_{t}^{\alpha} u(x, t)=-A u(x, t)+\mu(t) f(x),(x, t) \in Q
$$

A : symmetric uniformly ellitpic with x-dependent coefficients, e.g., $A=-\Delta$

Let: $u(\cdot, \mathbf{0}),\left.\partial_{A} u\right|_{\partial \Omega \times(0, T)}:$ conormal: given.

Inverse source problems: $\Gamma \subset \partial \Omega$:

- Type I: Determine $f(x), x \in \Omega$, from $\left.u\right|_{\Gamma \times(0, T)}$, for given $\mu(t)$.
- Type II: Determine $\mu(t), 0 \leq t \leq T$, from $\left.u\right|_{\Gamma \times(0, T)}$ for given $f(x)$.

Uniqueness for Type I
Let: $f \in H_{0}^{3}(\Omega), \mu \in C^{1}[0, T], \mu \not \equiv 0$,
$\Gamma \subset \partial \Omega$: arbitrary sub-boundary
Then $u(x, t)=0, x \in \Gamma, 0<t<T$ implies $f=0$ in Q.

Sketch of Proof

1. We can prove:

$$
\begin{aligned}
& \partial_{t}^{\alpha} v=-A v \text { in } Q \\
& \left.v\right|_{\Gamma \times(0, T)}=\left.\partial_{A} v\right|_{\partial \Omega \times(0, T)}=0 \\
& \Longrightarrow v=0 \text { in } Q
\end{aligned}
$$

2. Duhamel's principle

$$
\begin{aligned}
& \partial_{t}^{\alpha} u=-A u+\mu(t) f,\left.u\right|_{\partial \Omega}=\mathbf{0}, u(\cdot, \mathbf{0})=\mathbf{0} \\
& \partial_{t}^{\alpha} v=-A v,\left.v\right|_{\partial \Omega}=0, v(\cdot, \mathbf{0})=f
\end{aligned}
$$

$$
u(x, t)=\int_{0}^{t} \theta(t-s) v(x, s) d s \quad \text { in } Q
$$

Here $\theta(t)=D_{t}^{\alpha-1} \mu(t):=\frac{1}{\Gamma(\alpha)} \frac{d}{d t} \int_{0}^{t} \frac{\mu(s)}{(t-s)^{1-\alpha}} d s$

Stability for Type II

Let f be smooth and $f\left(x_{0}\right) \neq 0$. Then $\left\|\partial_{t}^{\alpha} u\left(x_{0}, \cdot\right)\right\|_{C[0, T]} \sim\|\mu\|_{C[0, T]}$.

Without $f\left(x_{0}\right) \neq 0$?
Uniqueness Let Γ be arbitrary subboundary and $f \not \equiv 0$.
Then $\left.u\right|_{\Gamma \times(0, T)}=0 \Rightarrow \mu=0$ in $(0, T)$

Counter-example for data $u\left(x_{0}, t\right)$ with $f\left(x_{0}\right)=0$: $\Omega=(0,1), f(x)=\cos \pi x, x_{0}=\frac{1}{2}$
And $u\left(x_{0}, t\right)=0,0<t<T$ for any $\mu(t)$.
One point observation does not guarantee the uniqueness!

6. Inverse coefficient problem by Carleman estimate

by Y. Zhang (Fudan Univ.) and M. Yamamoto $u(p)(x, t)$:
$\partial_{t}^{1 / 2} u=\partial_{x}^{2} u(x, t)+p(x) u(x, t)$ in Q $u(\cdot, 0), u(0, t)$: given Inverse Problem: fixed $t_{0} \in(0, T)$, determine $p(x)$ by $\partial_{x} u(0, \cdot), u\left(\cdot, t_{0}\right)$.

Conditional stability in inverse coefficient problem

Assume a priori boundedness for p, q and $u(p), u(q)$ and $u(p)\left(x, t_{0}\right), u(q)\left(x, t_{0}\right) \neq 0$, $0 \leq x \leq \ell$.
For small $\delta>0, \exists C=C(\delta)>0$ and $\exists \kappa=\kappa(\delta) \in(0,1)$ such that

$$
\begin{aligned}
& \|p-q\|_{H^{2}(0, \ell-\delta)} \leq C\left(\left\|(u(p)-u(q))\left(\cdot, t_{0}\right)\right\|_{L^{2}(0, \ell)}\right. \\
+ & \left.\left\|\partial_{x}(u(p)-u(q))(0, \cdot)\right\|_{L^{2}(0, T)}\right)^{\kappa}
\end{aligned}
$$

Key to the proof

- Carleman estimate
- Bukhgeim-Klibanov method

Carleman estimate can be proved for $\alpha=1$ /[natural number].
\Longrightarrow very limited!

7. Inverse coefficient problem by integral transform

with L. Miller (Univ. Paris Ouest)
Let $\mathbf{0}<\alpha<2$.
$u(p): \partial_{t}^{\alpha} u=\Delta u+p(x) u,\left.u\right|_{\partial \Omega}=0$,
$u(\cdot, 0)=a, \partial_{t} u(\cdot, 0)=0$ (if $1<\alpha<2$)
$w(p): \partial_{t}^{2} w=\Delta w+p(x) w,\left.w\right|_{\partial \Omega}=0$,
$w(\cdot, 0)=a, \partial_{t} w(\cdot, 0)=0$
Theorem (Bazhlekova 2001)
$u(p)(x, t)=\int_{0}^{\infty} K_{\alpha}(t, s) w(p)(x, s) d s$ in Q

Here $K_{\alpha}(t, s)=\frac{1}{t^{\gamma}} \Phi_{\gamma}\left(\frac{s}{t^{\gamma}}\right), \gamma=\frac{\alpha}{2}$,
$\boldsymbol{\Phi}_{\gamma}(\boldsymbol{z})=\sum_{n=0}^{\infty} \frac{(-z)^{n}}{n!\Gamma(-\gamma n+1-\gamma)}$: Wright function

Lemma 1 (Miller-Yamamoto)
$\int_{0}^{\infty} K_{\alpha}(t, s) f(x, s) d s=0$ for $x \in \Omega, t>0$ and $\|f(\cdot, t)\|_{L^{2}(\Omega)} \leq \exists M e^{t \omega}$ with $\omega>0 \Longrightarrow f=0$ in Q.

Lemma 2 (Sakamoto-Yamamoto)
$u:(0, T] \longrightarrow L^{2}(\Omega)$ is analytic in
$\left\{z \in \mathbb{C}, z \neq 0,|\arg z|<\frac{\pi}{2}\right\}$.

Theorem (Miller and Yamamoto)

 Let $\exists \omega \subset \Omega$ with $\partial \omega \supset \partial \Omega$ and $p=q$ in ω. Assume that $\inf _{\Omega \backslash \bar{\omega}}|a|>0$.Then $u(p)=u(q)$ in $\omega \times(0, T)$ implies $p=q$ in Ω.

Sketch of Proof

$u(p) \Longleftrightarrow w(p), u(q) \Longleftrightarrow w(q)$
$u(p)=u(q)$ in $\omega \times(0, T) \Longrightarrow$
$u(p)=u(q)$ in $\omega \times(0, \infty)$ by Lemma 2
$\overrightarrow{\int_{0}^{\infty}}{ }_{K_{\alpha}}(t, s)(w(p)-w(q))(x, s) d s=0$,
$x \in \omega, t>0$
$\Longrightarrow w(p)=w(q)$ in $\omega \times(0, T)$
$\Longrightarrow p=q$ in Ω
by Imanuvilov and Yamamoto: 2001

8. Determination of nonlinearity

With Y. Luchko (Beuth Tech. Hochschule Berlin) -
W. Rundell, L.Zuo (Texas A\&M Univ.)

Let $0<\alpha<1$.

$u(f): \partial_{t}^{\alpha} u=\Delta u+f(u(x, t))$ in Q
$\partial_{\nu} u(x, t)=g(x, t), x \in \partial \Omega, 0<t<T$, $u(x, 0)=a(x), x \in \Omega$.
We set
$\mathcal{F}=\left\{f \in C^{1}(\mathbb{R}): f^{\prime}(r)<0, r \in(m, M)\right\}$,
$m=\inf _{x \in \Omega} a(x), M=\sup _{x \in \Omega} a(x)$.

Uniqueness Let $f_{1}, f_{2} \in \mathcal{F}$. If $u\left(f_{1}\right)\left(x_{0}, t\right)=u\left(f_{2}\right)\left(x_{0}, t\right), 0 \leq t \leq T$ with some $x_{0} \in \Omega$ and $T>0$, then there exist constants m_{1}, M_{1} with $m \leq m_{1}<M_{1} \leq M$ such that $f_{1}(r)=f_{2}(r)$ for $m_{1} \leq r \leq M_{1}$

Remark

- For analytic f_{1}, f_{2}, we have global uniqueness.
- numerical method

Thank you very much!

